Python是一种简单易用的编程语言,它广泛地应用于数据分析、人工智能、机器学习等领域。作为一名Python程序员,必须掌握一些基本的代码,以便在实际项目中使用。这篇文章将为你呈现Python必背100源代码,帮助你提高编程技能和效率。
第一部分:基础操作
1. 打印Hello World:
print("Hello World")
2. 变量赋值:
name = "Tom"
age = 25
print("My name is", name, "and my age is", age)
3. 条件语句:
if x > y:
print("x is greater than y")
elif x < y:
print("x is less than y")
else:
print("x and y are equal")
4. 循环语句:
for i in range(10):
print(i)
while x < 5:
print(x)
x += 1
5. 列表:
my_list = [1, 2, 3, 4, 5]
print(my_list[0]) #输出1
my_list.append(6) #添加6
print(my_list)
第二部分:字符串操作
6. 字符串拼接:
first_name = "Tom"
last_name = "Smith"
full_name = first_name + " " + last_name
print(full_name)
7. 字符串替换:
my_string = "Hello World"
new_string = my_string.replace("World", "Python")
print(new_string)
8. 字符串长度:
my_string = "Hello World"
length = len(my_string)
print(length)
9. 字符串分割:
my_string = "apple,banana,orange"
my_list = my_string.split(",")
print(my_list)
10. 字符串大小写转换:
my_string = "Hello World"
new_string = my_string.upper()
print(new_string)
new_string = new_string.lower()
print(new_string)
第三部分:文件操作
11. 打开文件并读取:
file = open("example.txt", "r")
contents = file.read()
print(contents)
file.close()
12. 写入文件:
file = open("example.txt", "w")
file.write("This is a test.")
file.close()
13. 迭代文件:
file = open("example.txt", "r")
for line in file:
print(line)
file.close()
14. 检查文件是否存在:
import os
if os.path.exists("example.txt"):
print("File exists.")
else:
print("File does not exist.")
15. 删除文件:
import os
os.remove("example.txt")
第四部分:网络操作
16. 发送HTTP请求:
import requests
response = requests.get("https://www.baidu.com")
print(response.text)
17. 下载文件:
import urllib.request
url = "http://www.example.com/file.txt"
urllib.request.urlretrieve(url, "file.txt")
18. 邮件发送:
import smtplib
from email.mime.text import MIMEText
msg = MIMEText("This is a test email.")
msg['Subject'] = "Test email"
msg['From'] = "sender@example.com"
msg['To'] = "recipient@example.com"
s = smtplib.SMTP('localhost')
s.send_message(msg)
s.quit()
19. 解析JSON:
import json
json_string = '{"name": "Tom", "age": 25, "city": "New York"}'
parsed_json = json.loads(json_string)
print(parsed_json)
20. 解析XML:
from xml.dom import minidom
xml_string = "<person><name>Tom</name><age>25</age></person>"
dom = minidom.parseString(xml_string)
person = dom.getElementsByTagName("person")[0]
name = person.getElementsByTagName("name")[0].firstChild.nodeValue
age = person.getElementsByTagName("age")[0].firstChild.nodeValue
print(name)
print(age)
第五部分:数据分析
21. 读取CSV文件:
import pandas as pd
data = pd.read_csv("example.csv")
print(data)
22. 数据统计:
import pandas as pd
data = pd.read_csv("example.csv")
mean = data.mean()
median = data.median()
min_value = data.min()
max_value = data.max()
print(mean)
print(median)
print(min_value)
print(max_value)
23. 数据过滤:
import pandas as pd
data = pd.read_csv("example.csv")
filtered_data = data[data['age'] >= 18]
print(filtered_data)
24. 数据可视化:
import pandas as pd
import matplotlib.pyplot as plt
data = pd.read_csv("example.csv")
plt.plot(data['age'], data['salary'])
plt.xlabel('Age')
plt.ylabel('Salary')
plt.show()
25. 计算线性回归:
import pandas as pd
from sklearn.linear_model import LinearRegression
data = pd.read_csv("example.csv")
X = data[['age']]
y = data['salary']
reg = LinearRegression().fit(X, y)
print(reg.intercept_)
print(reg.coef_)
第六部分:机器学习
26. 分类:
import pandas as pd
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
data = pd.read_csv("example.csv")
X = data[['age', 'salary']]
y = data['gender']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
clf = DecisionTreeClassifier()
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
print(accuracy_score(y_test, y_pred))
27. 聚类:
import pandas as pd
from sklearn.cluster import KMeans
data = pd.read_csv("example.csv")
X = data[['age', 'salary']]
kmeans = KMeans(n_clusters=2, random_state=0).fit(X)
print(kmeans.labels_)
28. 神经网络:
import pandas as pd
from sklearn.neural_network import MLPClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
data = pd.read_csv("example.csv")
X = data[['age', 'salary']]
y = data['gender']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
clf = MLPClassifier(hidden_layer_sizes=(10,), max_iter=100)
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
print(accuracy_score(y_test, y_pred))
29. 特征提取:
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
data = pd.read_csv("example.csv")
documents = data['description'].tolist()
vectorizer = TfidfVectorizer(stop_words='english')
matrix = vectorizer.fit_transform(documents)
print(matrix)
30. 图像处理:
import cv2
img = cv2.imread('example.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
edges = cv2.Canny(gray, 50, 150)
cv2.imwrite('example_edges.jpg', edges)
现在你已经掌握了Python必背的100个代码示例。如果你能把这些例子都运用到实际项目中,那么你将成为一名优
© 版权声明
文章版权归作者所有,未经允许请勿转载。
THE END
暂无评论内容