寻找Bootstrap置信区间的方法

5d3bf8f09123a111

bootstrap置信区间:

假设不能知道总体分布F。但是有一个分布F的数据样本,容量为N。以此样品中重新取样的方式提取N容量的样品。这个样本称为bootstrap样本。从原始样本中独立提取多个bootstrap样本,统计推断出整个F,称为非参数bootstrap方法(也称为自助方法)。

使用bootstrap方法可以求得变量(参数)的置信区间,称作bootstrap置信区间。

bootstrap置信区间:

使用Python计算bootstrap置信区间:

这里以一维数据为例,取样本均值作为样本估计量。代码如下:

import numpy as np


def average(data):
    return sum(data) / len(data)


def bootstrap(data, B, c, func):
    """
    计算bootstrap置信区间
    :param data: array 保存样本数据
    :param B: 抽样次数 通常B>=1000
    :param c: 置信水平
    :param func: 样本估计量
    :return: bootstrap置信区间上下限
    """
    array = np.array(data)
    n = len(array)
    sample_result_arr = []
    for i in range(B):
        index_arr = np.random.randint(0, n, size=n)
        data_sample = array[index_arr]
        sample_result = func(data_sample)
        sample_result_arr.append(sample_result)

    a = 1 - c
    k1 = int(B * a / 2)
    k2 = int(B * (1 - a / 2))
    auc_sample_arr_sorted = sorted(sample_result_arr)
    lower = auc_sample_arr_sorted[k1]
    higher = auc_sample_arr_sorted[k2]

    return lower, higher


if __name__ == '__main__':
    result = bootstrap(np.random.randint(0, 50, 50), 1000, 0.95, average)
    print(result)

输出:

(20.48, 28.32)
© 版权声明
THE END
喜欢就支持一下吧
点赞5 分享
评论 抢沙发
头像
欢迎您留下宝贵的见解!
提交
头像

昵称

取消
昵称表情代码图片

    暂无评论内容