解析统计学bootstrap用于解决哪些问题

Bootstrap方法根据给定的原始样本复制观测信息对总体的分布特性进行统计推断,不需要额外的信息。

 

5d3021496a216601

Efron(1979)认为该方法也属于非参数统计方法。(推荐学习:Bootstrap视频教程)

Bootstrap方法从观测数据开始,不需要分布假设。针对统计学中的参数估计和假设测试问题,利用Bootstrap方法生成的BOOTSTRAP样本,可以使用其中一个计算统计数据的数据集来反映该统计数据的采样分布。也就是说,通过生成经验分布,即使对总体分布不确定,也可以大致估计统计量和置信区间。

因而,Bootstrap方法能够解决许多传统统计分析方法不能解决的问题。

在Bootstrap的实现过程中,计算机的地位不容忽视(Diaconis et al.,1983),因为Bootstrap涉及到大量的模拟计算。

可以说如果没有计算机,Bootstrap理论只可能是一纸空谈。随着计算机的快速发展,计算速度的提高,计算费时大大降低。

在数据的分布假设太牵强或者解析式太难推导时,Bootstrap为我们提供了解决问题的另一种有效的思路。因此,该方法在生物科学研究中有一定的利用价值和实际意义。

应用bootstrap的原因:

其实,在进行分析的时候,首先要做的就是,判断随机变量的类型,然后就是判断随机变量的数据服从什么分布。

什么分布至关重要,因为它直接决定能不能分析。举例:如果进行方差分析,首先就要求正态分布,如果不是正态分布,就要有补救措施,这个补救措施就是bootstrap。

bootstrap还有一个用处,因为经典统计学对集中趋势比较完善,但是对其他一些分布参数,例如中位数,四分位数,标准差,变异系数等的区间估计不完善,所以就需要bootstrap,这种方法。

bootstrap和经典统计学方法类似,一般情况参数法效率高于非参数法,但是,参数法最大的弊端就是需要事先有一个分布模型,如果模型不符合,分析结果可能错误,也就是白分析。

© 版权声明
THE END
喜欢就支持一下吧
点赞12 分享
评论 抢沙发
头像
欢迎您留下宝贵的见解!
提交
头像

昵称

取消
昵称表情代码图片

    暂无评论内容